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Abstract~This paper is concerned with the problem of point force and point charge applied in the
interior of an infinite two-phase transversely isotropic piezoelectric solid. Based on the general
solutions, by using the method of the image source, a series of displacement functions are
constructed. The Green's functions are obtained when arbitrary constants are determined by the
boundary conditions on the interface. Furthermore, we reduce the present solutions to the extension
of Mindlin results and of Lorentz results for semi-infinite transversely isotropic piezoelectric
materials by suitable substitutions of boundary conditions on the interface. (g 1997 Elsevier Science
Ltd.

I. INTRODUCTION

In recent years, intelligent or smart structures and systems have become an emerging new
research area. Piezoelectric material, due to its characteristic direct-converse piezoelectric
effect, has naturally received considerable attention. The fundamental solutions or the
Green's functions can be used to construct many analytical solutions of practical import
ance. They are also very important in the areas of study such as point defects, inclusion
particles in materials and, especially, the boundary element method.

For isotropic infinite media, the point force solutions are just the well known Kelvin
results. With regards to the transversely isotropic solids, Pan and Chou (1976) have made
key contributions to the point force solutions for an infinite body. They obtained the
solutions for both the two different cases of the eigenvalues of materials by using a
complicated general solution. Much earlier than this, Hu (1956) had also obtained the
point force solutions for an infinite transversely isotropic solids. Regarding the study of
Green's functions for piezoelectric media, Chen (1993) and Chen and Lin (1993) expressed
the infinite body Green's functions and their derivatives of first and second degree as the
contour integrals over the unit circle by using three-dimensional Fourier transforms. Dunn
(1994) gave an explicit solution for the Green's functions for an infinite transversely
isotropic piezoelectric solid by taking Radon transforms, coordinator transformation and
evaluation of residues in sequence. Regarding the plane problem, Lee and Jiang (1994) have
obtained a fundamental solution for an infinite plane by using double Fourier transforms.

The point force solutions for an isotropic half-space had been obtained by Mindlin
(1936) and have been widely referenced. The formula and developing processes of the
Mindlin solutions and their applications can be found in the publications of Lure (1964)
and Brebbia (1984). Phan-Thien (1983) showed that Lorentz's result could be further
extended to the problem of a point force applied in the interior of a half-space involving a
fixed plane boundary. Pan and Chou (1979a) had obtained the Green's functions for a
transversely isotropic half-space for both the two cases of eigenvalues. With regard to
piezoelectric media, Wang and Chen (1994) had studied the problem of concentrated
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forces normal to the plane of isotropy applied at the boundary of a transversely isotropic
piezoelectric half-space. Wang and Zheng (1995) had obtained the solutions to the problem
of concentrated forces parallel to the plane of isotropy applied at the boundary of the
piezoelectric half-space. Sosa and Castro (1994) had obtained the solutions to the problem
of concentrated loads at the boundary of a piezoelectric half-plane. Rongved (1955) and
Huang and Wang (1991) studied the problem ofa point force applied in one of two bonded
semi-infinite isotropic solids. Dundurs and Hetenyi (1963) extended the study to two
semi-infinite isotropic solids in smooth contact. With regard to the transversely isotropic
materials, Pan and Chou (1979b) studied the Green's functions for two-phase transversely
isotropic materials and obtained closed-form solutions for all the four cases the eigenvalues
of the materials might happen to satisfy. Other works concerning this problem can be
found in the publications referenced in those papers. However, for transversely isotropic
piezoelectric media, either for a two-phase media or for a half-space media, the study of
the problem to point force and point charge applied in the interior of the medium has not
been published. This paper, based on the general solution, by using the method of the
image source, systematically studies the problem of point force and point charge applied in
the interior of an infinite two-phase transversely isotropic piezoelectric solid, and obtained
overall solutions. Furthermore, we obtained the extension results of Mindlin and of Lorentz
for a piezoelectric half-space.

For future reference, we quoted the linear constitutive relations for transversely iso
tropic piezoelectric media as follows:

(
au ow) o4J

Dr = e15 -;- +;:;- -£11-;;-
uZ uy OX

(1)

where airl), D;, u(u, w) and 4J are the components of stress, electric displacement, mech
anical displacement and electric potential, respectively; cu, eij and £lj are the elastic stiffness,
piezoelectric and dielectric constants, respectively.

According to Wang and Zheng (1995) and Ding et at. (1996), there are general
solutions of the coupled equations for the transversely isotropic piezoelectric media as
follows:
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(2)

where 51> 52, 53 are the three roots of the characteristic equation defined in Ding et al. (1966),
WI is the displacement wand W 2 is the electric potential ¢; furthermore, functions t/!i satisfy

(A + ::;) t/!i = 0, (i = 0, 1,2,3)

in which A = (82/8x2)+ (82/8i), Zi = 5iZ and 56 = C66/C44'
The coefficients rx im are given by

where

m l = Gil (C13 +c44)+eI S(e15 +e31)

m2 = G33(C 13 +c44)+e3 3(el S+e3d

m 3 = CIIG33 +C44Gll + (e iS +e31)2

m4 = clle33+c44eIS-(C13+c44)(eIS+e31)'

(3)

(4)

(5)

Substituting eqn (2) into eqn (1), the expressions of stress and electric displacement
are given in terms of functions t/!i:

(6)
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where m = 1, 2; (iI, (i2, rd, 'x2, 'yl and 'y2 represent (J" D" r m D x , 'yz and Dp and the
coefficients ~;, W;m, 8;m are given by

(7)

With regard to the problem of a point force or point charge applied in the interior of
a two-phase transversely isotropic piezoelectric solid with the interface parallel to the plane
of isotropy, a Cartesian coordinate system is chosen such that the xy-plane lies in the
interface and the point force or point charge is acting at the point (0,0, h). Assume that the
two half-spaces are perfectly bonded, thus we have the boundary conditions on the interface
(z = 0):

u=u l
, v=v', \1t'm=lV~ (8a)

(8b)

where ()' refers to the variables in the half-space z ~°and the other ones refer to those in
the other half-space z ? 0.

In the following discussion, the displacements and electric potential are expressed as
the sum of two terms, giving

U=U\+U2

v=v\+v2 (Z?o)

W m = W m \ +wm2 , (m = 1,2) (9)

where u" V\ and W m1 correspond to the point force or point charge solutions for an infinite
piezoelectric solids; Uz, V2 and W m 2 are the terms of superposition in order to satisfy the
boundary conditions.

For future reference, we introduce a series of denotations:

- J 2 2 -2Ru = x +y +zu'

R' J 2+ .2+ '2ij = X Y z u'

(i,j = 0, 1,2,3)

(10)

2. SOLUTIONS TO THE PROBLEM OF COMBINATION OF POINT FORCE P IN z
DIRECTION AND POINT CHARGE Q

This is an axisymmetric problem. Assume

ljJo = 0, ljJi = Ai sign(z-h) In(Rii+silz-hl), (i = 1,2,3) (11 )

where R;; = Jr2 +zL r2 = x2 +l, and Ai (i = 1,2,3) are arbitrary constants subject to
determination.

Substituting eqn (11) into (2) and (6) yields
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(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Consideration of the continuity of displacements u], VI and stress ayj, O"y], !xyl on z = h
yields

3

L A,=O.
i=l

(21)

Then, on the neighborhood of the plane of z = h, we cut an elastic layer by using two
planes of z = h ±e. Consideration of the equilibrium of the elastic layer yields two additional
equations:

f
+OOf+OO
-00 -ex [O"zi (x,y,h+e) -O"zl (x,y, h-e)] dxdy+P = 0

f
+OO f+oo
-00 -00 [Dz1(x,y,h+e)-Dzl(x,y,h-e)]dxdy-Q = O.

Substituting eqn (20) into eqns (22) and (23), respectively, yields

(22)

(23)
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3

4n L 9il A i -P = °
i= 1

3

4n L 9i2 Ai +Q = 0.
;=1

(24)

(25)

Solving the algebra eqns (21), (24) and (25), the constants Ai (i = 1,2,3) can be
determined:

Assume

A I = [P(9 22 - 9 32 ) + Q(921 - 9 31 )]/b l

A 2 = [P(932-912)+Q(931-911)]/bl

b l = 4n[(9 11 -931 )(922 -9d- (9 21 -931 )(9 12 -932 )]

A 3 = -A I-A2 = [P(912-922)+Q(911-921)]/bl'

3

l/Jo=O, l/Ji=LAijln(Rij+zij ), U=I,2,3).
j= I

(26)

(27)

Substituting eqn (27) into (I) and (6) yields U2, V2, W m 2, stresses and electric displace
ments. By adding these to the corresponding ones of eqns (12)-(20), according to eqn (9),
we have

~ (Ai ~ A ij )Wm = L, IX im --=- + L, -
i=1 Rii j~IRij

~ (Ai ~ All)
Lxm = - XL, W im ----=3 +L, -3

1=1 R ii l=IR;j

3 (A 3 A)
Lym = -y I W im ~ + L----';-

i~1 Rii j~1 Rij

(J = _ ~ 9 (AiZii ~ AijZij)
m L, 1m -3 + L, 3

i~1 Rii j~1 Rij
(28)

where m = I, 2, Ai are known and Aij are nine arbitrary constants subject to determination
by boundary conditions.

In the half-space of Z ~ 0, assume

3

l/J~ = 0, l/J; = L A;iln(R;i-z;J, (i = 1,2,3).
j=l

(29)

Substitution of eqn (29) into (2) and (6), respectively, yields the displacements, electric
potential, stresses and electric displacements as follows:
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3 3 A'
, = '" '" U

X

U L. L. R' (R' , ) ,
i=lj=l ij Ij-Zij

3 3 A~

, "', '" IJT xm = XL. W;m,L,----;}
1= I J= I R;j

It follows from the boundary conditions on the interface stated as eqn (8) that

3 3

-A,+ L Aji = I A)i
j~ I j~ I

3 3

aimA,+ I ajmAji = - I a)mA);
j= I j= I

3 3

-wjJA,- I wj,Aji = L w),A),
j~ I j~ I

3 3

9imAi- L 9jmAji = - L 9)mA );
j~ I j~ I

(30)

(31)

(32)

(33)

(34)

where i = 1, 2, 3 and m = 1, 2 and a;m, w;m, 9;m, (i = 1,2,3,4,5, m = 1,2) are defined the
same as eqns (4) and (7) except that the material constants are replaced by the corresponding
ones in the half-space of z ~ 0, and A;j, Au (i,j = 1,2,3) are arbitrary constants that can
be readily determined by the above algebra equations with eqns (31)-(34).

3. SOLUTIONS TO THE PROBLEM OF POINT FORCE T IN x DIRECTION

Assume

ljJo = _ DoY
Roo +solz-hl

Dx
ljJ, = - 'I h' (i = 1,2,3)

Ri;+s, z- I
(35)

where Di (i = 0, 1,2,3) are arbitrary constants subject to determination. Substitution of
eqn (35) into (2) and (6) yields

UI = -Do [ 1 - y_2 J
Roo +So Iz - hi Roo (Roo +So Iz - hl)2

Doxy 3 D;
VI = - _ _ 2 -xy L ----------2

Roo(Roo+solz-hl) i~1 Rii(Rii+s,lz-hl)

3 D
W m1 = -sign(z-h)xL aim R(R 'I -hI)

,~I ,,+s, z

(36)

(37)

(38)
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-3 - 2R;;(R;;+s;lz-hl)

. [1 ~Txml = WOm slgn(z-h)Do - - - ------'----'---
Roo(Roo +solz-hl) R6oCRoo +solz-hl)

[
1 1 ]

Tvml = WOm sign(z-h)Doxy -3 - + -2 - 2
. Roo(Roo +solz-hl) Roo(Roo +solz-hl)

~ D;x
O"ml = L, 9im ---=-;o

i~l R ii

The consideration of the continuity of the components W m , T xm and T ym on z = h yields

(39)

(40)

(41)

(42)

(43)

(44)
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3

L aimDi = 0, (m = 1,2)
i=1

3

womDO + I wimDi = 0, (m = 1,2).
;=1
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(45)

(46)

Substituting the expression of W im as shown in eqn (7) into eqn (46) and further using
eqn (45), the two equations of (46) all become

3

L SiDi = O.
i= I

(47)

Still, considering the equilibrium of an elastic layer cut out by two planes of Z = h ±e
on the neighborhood of the plane of Z = h yields an additional equation, giving

f
+xc f+oc

-xc -xc [r",(x,y,h+e)-Txz,(x,y,h-e)]dxdy+T= o.

Substituting eqn (42) into (48) yields

3

2nC44SoDo - 2n L Wil Di+ T = O.
;=1

(48)

(49)

By solving eqns (45), (47) and (49) the constants D i (i = 0, 1,2,3) can be determined,
giving

Do = - T/(4nc44 s0 )

D l = (a2l a 32 -a3 Ia22)T/b2

D2 = (a3l a l2 -all an )T/b2

D 3 = (alla22-a21r:t.12)T/b2

b2 = 4nc44[Sl (a2 1r:t.32 - a 31 a22 )+S2 (a3l a l2-all an) +S3 (all a22 - a21 al2)]. (50)

Assume

./, _ DooY
'1'0 -

Roo +zoo

ljJi = t Dljx , (i = 1,2,3).
i~l Rii+zlj

(51)

Substitution of eqns (51) into (2) and (6) yields U2, V2, wm2 , stresses and electric
displacements. By adding these to the corresponding ones of eqns (36)~(44) according to
eqn (9), we have

[
I l ] 3 {[ I x

2

]- Doo - + L D i - - _ _ ,

Roo +Zoo Roo(Roo +zoo)2 i~ I Ki +silz-hl Rii(Rii+silz-hl)"
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,_ ~ [ . h Di ~ Dij ]Itm - -x 1... (lim slgn(Z- ) - - + 1...
i~ 1 R;;(Rii + sil z - hi) j~ 1 Rij(Rij +Zij)

{. [1 y2txrn = WOrn slgn(z-h)Do - - --_----'----'---
RooCRoo +solz-hl) R60(Roo +solz-hl)

(52)

where m = 1, 2; Do, Di (i = 1,2,3) are known and Doo, Dij (i,j = 1,2,3) are 10 arbitrary
constants subject to determination by boundary conditions.

In the half-space of z ~ 0, assume

, L~oY ,3 L;jX
t/Jo = R' ,; t/Ji = L: R' " (i= 1,2,3)

oo-zoo j~1 ij+Zij
(53)

Substitution of eqn (53) into (2) and (6), respectively, yields the displacements, electric
potential, stresses and electric displacements as follows:

L~oXY 3 3 L;j
v' = - R' (R' ')2 -xy L: L: R' (R' ')2

00 oo-zoo i~lj=1 ij ij-Zij
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, 3, 3 L;J
W m = X L aim L R' (R' ')

1=1 j=1 If li-Zlj"

[
1 2 2 ]r' - -W' L' y y

xm - Om 00 I I I - 3 - 2 2
Roo(Roo - ZOO) R'oo(R~o - Z~o) R'oo(R~o -Z~o)
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(54)

Similarly, it follows from the boundary conditions on the interface stated as eqns (8)
that

Do +Doo = L~o

3 3

D i + L Dji = L Lji
j~ I j~ I

3 3

aimDi- L ajmDji = L ajmLji
;= I ;~ I

3 3

-wilDi+ L wjlDji = - L wjlLji
J= I j~ I

3 3

9im Di+ L 9jm Dji = L 9jm L j,
;= I ;~ I

(55)

(56)

(57)

(58)

(59)

(60)

where i = 1,2,3, m = 1,2; Doo, Dij, L~o and L;j (i,j = 1,2,3) are arbitrary constants that
can be readily determined by the above algebraic equations.

4. SOLUTIONS FOR SEMI-INFINITE TRANSVERSELY ISOTROPIC PIEZOELECTRIC
MEDIA

From the above results, we can obtain the extension of Mindlin results in elasticity
and of Lorentz results easily.

4.1. Extension of Mindlin results
For this case, the terms on the right-hand side of eqn (8b) are equal to zero, that is,

()~x = 0, r~z = 0, rjz = 0 and D~ = O. By setting the right-hand side of eqns (33) and (34) to
zero, respectively, Ai) can be readily determined by the 9 algebraic equations. Similarly, we
can determine Di} by eqns (58)-(60), so they can be conveniently solved as follows:
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All = AI(9z193ZWII-92293IWII-9IZ93IWZI +91193ZW21 +9129zIW31-9119zzW31)/da

A ZI = 2Al(91Z931 -91193Z)WII/da

A 3 I = 2A I (9 119 22 - 9 1z 9zI )w I 1/da

A IZ = 2Az(9z193Z -922 93d W21/da

A 22 = Az(92293IWII-921932WII +9IZ93IWZI-911932WZI +9IZ921W31-9119zzW31)/da

A 3Z = 2Az(911922-9129ZdW21/da

A I3 = 2A3(9z193z-922'93dw31/da

A 23 = 2A3(91293j-91193Z)W31/da

A 33 = A3(92293IWII -92193ZWII-9IZ93IWZI +911932WZI-9IZ921W31 +911 9ZZ W31)/da

da = 92293jWII-9Z193ZWII-9IZ93ZWZI +91193ZWZI +9129z1W31-9119zzW31 (61)

Doo = Do

D j , = D,AJI/A;, (i,j = 1,2,3). (62)

4.2. Extension of Lorentz results
For this case, the terms on the right-hand side of eqn (8a) are equal to zero, that is,

u' = 0, v' = 0, w;" = 0 and (j/ = O. We can set the right-hand sides ofeqns (31), (32) and
(55)-(57) to zero. We can hence determine the constants of AIj' and GIj.

5. CONCLUSIONS

1. The above solutions are restricted to the case of Sl #- Sz #- S3 #- Sj and
S'I #- S2 #- s; #- S'I' For other cases of multiple roots, the general solutions have not been
discussed in Ding et al. (1996), their expressions are given in Appendix A. The fundamental
solutions for infinite media and the Green Functions for the two-phase media are listed in
Appendix B.

2. If the two half-spaces are in smooth contact, the boundary conditions on the
interface are:

W m = w~, (m = 1,2)

(63)

Following the same approach as above, the arbitrary constants AIj' A;j, Doo, DIj' L~o and
L;; can also be determined by the boundary conditions stated as eqn (63). We thus obtain
the solutions for two smooth contact semi-infinite transversely isotropic piezoelectric solids.
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APPENDIX A: THE GENERAL SOLUTIONS FOR THE CASES OF MULTIPLE ROOTS

The determinant of the characteristic eqn (c7) in Suo et al. (1992) is a third-order polynomial in p2, it is easy
to verify that the equation can be written in the following form

(A-I)

where a, b, c and d are the functions of Cij, e,j' oil; they are defined in Ding et al. (1996). It is obvious that if we set
p2 = _S2, the above equation becomes

as6 -bs4 +cs2 -d = 0,

which is just the eqn (32) in Ding et al. (1996). According to Suo et al. (1992), eqn (A-2) can be written

For stable materials, they are restricted so that

iX > 0, ~ > 0, p > - I.

From eqn (A-3), we have

S2 =~[(p;lr+(p~lrJ

s3=~[(p;lr-(p~lrJ

(A-2)

(A-3)

(A-4)

(A-5)

These expressions ensure that Res, > 0 (i = 1,2,3).
From eqns (A-5) and (A-4), we can get some useful attributes of S,: when p > I, S2 > 0 and SJ > 0; when

p = I, S2 = SJ = ~ > 0; when -I < p < I, S2 and SJ are a conjugate pair, and it is impossible to change them into
pure imaginary roots; when p = I and ~ = iX, Sl = S2 = SJ = ix.

The general solutions can also be expressed in terms of some "harmonic" functions for the cases of multiple
roots of S,. After performing similar derivations as what Ding et al. (1996) have donefor the case ofSl # S2 # SJ # Slo

we have
1. for the case of SI # S2 = SJ

iJljJo aljJl iJljJ2 aljJJ
u = - --::;- + --::;- + --::;- + z 2 --::;-

uy uX uX uX
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where
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(A-6)

(A-7)

2. for the case of Sl = S, = SJ

where

2[3m, (all +a42)S; - m l Ct 4, + (6c44 e J3 s; - m4)sd
~52 =

The functions 1/1;, appearing in eqns (A-6) and (A-8), are also satisfied with eqn (3).

APPENDIX B: SOLUTIONS FOR THE CASES OF MULTIPLE ROOTS

(A-9)

BI. Solutions to the problem ofcombination ofpoint force P in z direction and point charge Q
a. When Sl # S, # SJ # Slo in the half space of z ;;:. 0, the components of mechanical displacements, stresses,

electric potential and electric displacement are expressed as eqn (28). In the half-space of z ~ 0, the components
are expressed differently in three cases:

a!. when s; '* So # s; # S'I' they have been solved;
a2. when s; # So = s;, assuming

J

1/1; = I B;,ln(R;J- z;),
J= I

a3. when S'I = So = s;, assuming

3 B'
(i =1,2); 1/1; =I R;J;

}= I 2.;
(B-1)

b. When Sl # S, = SJ, assuming

2 B.3I/Ii = sign(z-h)Biln(Ru+s.lz-hl)+I Bijln(Rij+zi) + It' (i = 1,2)
1= 1 i2

bl. when s; # s; # s; # S'l> assuming

b2. when s', # s; # sj, assuming

(B-2)

(B-3)

(B-4)



Green's functions for two-phase media 3055

b3. when s; = s; = S3, assuming

U= 1,2),
'E' E"

I/J~' - t --.Ji. + ]3Z22.

J - }= I R;j R'~2'
(B-5)

c. When s, = s, = S3, assuming

(i=2,3). (B-6)

cl. when s', '" s; '" S3 '" s;, assuming

(i = 2,3) (B-7)

H' H'-'
,I,' = H' 1 (R' _7' )+~"+~ (. 123),/" "n"." R' 1= " ;

iI RIll

c2. when s; '" s; = S3, assuming

c3. when s; = s; = S3, assuming

(B-8)

(B-9)

U= 2,3). (B-IO)

B2. Solutions to the problem ofpoint force T in x direction
d. When SI '" S, '" S3 '" Sl' in the half-space of z ;;, 0, the components of displacements, stresses, electric

potential and electric displacement are expressed as in eqn (52). In the half-space of z ~ 0, the components are
expressed differently in three cases:

dl. when S'I '" s; '" S', # 'I' they have been solved;
d2. when S'I # s; = S'" assuming

d3. when S'I = s; = S3' assuming

(i= 1,2);
1 H'

I _ ~ iY13jX .

i/J 1 - L, R' (R' , )'
j=! Ii 2j- Z 2j

(B-1 I )

i/J' - NODY
0- Roo -Zoo

e. When SI # S, = S3, assuming

, 3 lvr;;x
i/Ji = I R' (R' , )'

j=! Ii Ij-Zlj

(i=2,3). (B-12)

(i=1,2)

el. when s; # s; # S3 # s;, assuming

(B-13)
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1/1' - O~o
o - R~o +z~o

'0' 0'.III=~~ i3
X

'I' , L, R' ,+ R' (R' , ) ,
j=1 lj-zij i2 n-Zi2

(i=1,2,3); (B-14)

e2. when S'I "# S2 = s~, assuming

1/1' - p~oY
o - R~o +z~o

2 P' P'
.1"= '\'~ ;]X
'I' , L, R' ,+ R' (R' , )'1=1 U-zij i2 i2- Z i2

.1.' _ ~ P;jX P'13 X .
'I' 3 - L, R' (R' , ) +

j=1 2j 2}-Z2j R'~2

e3. when S'I = s; = s~. assuming

1/1' - Q~oY
o - R~o -z~o

(i = 1,2)

(B-15)

f. When SI = S, = s" assuming

fl. when S'I "# s; "# s; "# S'I , assuming

1/1' - S~oY
o - R~o -z~o

(i = 2,3)

(B-16)

(B-17)

n. when S'I "# S2 = s:" assuming

1/1' - T~oY
o - R~o -z~o

(i = 1,2,3); (B-18)

G. when S'I = S2 = s~, assuming

1/1' - 1!~oY
o - R~o -z~o

f 1£'11 X n'12X n~ 3X

1/1 I = R' ,+ R' (R' ') + -
11- Z 11 II II +Zll R'il

(B-20)

Substituting eqns (B-1 )-(B-20) into the general solutions of eqns (2) or (A-6) or (A-8), the expr~ssions of
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mechanical displacement and electric potential are obtained, then by the constitutive relations the expressions of
stresses and electric displacement are obtained. Consideration of the continuity of displacement components u, v
and stress components (J.n (J" 'x, on z = h, and of the equilibrium eqns (22)-(23) will lead to the following
equations to determine the constants Bi and C;

where

941 = [C33(1X 21 +:x4Jl+e33 (1X 22 +:X42 )]S2

942 = [e33(1X 21 +:X41)-£J3(1X 22 +1X42 )]S2

951 = [c33(21X41 + 1X 51) +e33 (21X 42 +IX J2 )]SI

952 = [e 33 (21X41 +1X51) -£3J(21X42 +1X 52 )]SI'

(B-22)

(B-23)

Consideration of the continuity of W m, 'xm, "'m on z = h and the equilibrium eqn (48), the following equations
are obtained to determine the constants Ei and G,

2

womEo + I wimEi-W4mEJ = 0, (m = 1,2)
i= I

where

Equation (B-25) can be simplified by virtue of eqns (7), (B-27) and (B-24)

(B-24)

(B-25)

(B-26)

(B-27)

(B-28)

The constants Ei (i = 0, 1,2,3) can be determined by solving the algebra equations (B-24), (B-26) and (B-28).

(B-29)

(B-30)

(B-3 I)

where

(B-32)

Equation (B-30) can be simplified by virtue of eqns (7), (B-29) and (B-32)

(B-33)

The constants Gi (i = 0, 1,2,3) can be determined by solving the algebra eqns (B-29), (B-31) and (B-33).
After the constants of the fundamental solutions for infinite media are obtained, the constants of Ail and B;"

Ai] and C;l' ... , Gij and n;} can be determined in pairs by the boundary conditions eqn (8). The control equations
for each pair of constants are similar to eqns (31)-(34) and (55)-(60). With Mathematica, such generation of
equations is easy and much more reliable.


